Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38651968

RESUMEN

Perimenstrual worsening of asthma occurs in up to 40% of asthmatic women, leading to increased acute exacerbations requiring clinical care. The role of sex hormones during these times remains unclear. In the current study, we used a translational approach to determine whether progesterone exacerbates allergic inflammation in the traditional OVA model in BALB/c mice. Simultaneously, we used PBMC from healthy human donors to assess the effects of progesterone on circulating ILC2. Briefly, lungs of ovarectomized (OVX) or sham-operated female (F-Sham) controls were implanted with a progesterone (P4, 25mg) (OVX-P4) or placebo pellet (OVX-Placebo), followed by sensitization and challenge with ovalbumin (OVA). Progesterone increased total inflammatory histologic scores, increased hyper-responsiveness to methacholine, increased select chemokines in the BAL and serum, and increased ILC2 and neutrophil numbers, along the airways in comparison to F-Sham-OVA and OVX-Placebo-OVA animals. Lung ILC2 were sorted from F-Sham-OVA, OVX-Placebo-OVA and OVX-P4-OVA treated animals and stimulated with IL-33. OVX-P4-OVA lung ILC2 were more responsive to IL-33 compared to F-Sham-OVA treated, producing more IL-13 and chemokines following IL-33 stimulation. We confirmed the expression of the progesterone receptor (PR) on human ILC2, and showed that P4 + IL-33 stimulation also increased IL-13 and chemokine production from human ILC2. We establish that murine ILC2 are capable of responding to P4 and thereby contribute to allergic inflammation in the lung. We confirmed that human ILC2 are also hyper-responsive to P4 and IL-33 and likely contribute to airway exacerbations following allergen exposures in asthmatic women with increased symptoms around the time of menstruation.

2.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375837

RESUMEN

This study tested whether a medicinal plant, Vasaka, typically consumed as a tea to treat respiratory malaise, could protect airway epithelial cells (AECs) from wood smoke particle-induced damage and prevent pathological mucus production. Wood/biomass smoke is a pneumotoxic air pollutant. Mucus normally protects the airways, but excessive production can obstruct airflow and cause respiratory distress. Vasaka tea pre- and co-treatment dose-dependently inhibited mucin 5AC (MUC5AC) mRNA induction by AECs treated with wood smoke particles. This correlated with transient receptor potential ankyrin-1 (TRPA1) inhibition, an attenuation of endoplasmic reticulum (ER) stress, and AEC damage/death. Induction of mRNA for anterior gradient 2, an ER chaperone/disulfide isomerase required for MUC5AC production, and TRP vanilloid-3, a gene that suppresses ER stress and wood smoke particle-induced cell death, was also attenuated. Variable inhibition of TRPA1, ER stress, and MUC5AC mRNA induction was observed using selected chemicals identified in Vasaka tea including vasicine, vasicinone, apigenin, vitexin, isovitexin, isoorientin, 9-oxoODE, and 9,10-EpOME. Apigenin and 9,10-EpOME were the most cytoprotective and mucosuppressive. Cytochrome P450 1A1 (CYP1A1) mRNA was also induced by Vasaka tea and wood smoke particles. Inhibition of CYP1A1 enhanced ER stress and MUC5AC mRNA expression, suggesting a possible role in producing protective oxylipins in stressed cells. The results provide mechanistic insights and support for the purported benefits of Vasaka tea in treating lung inflammatory conditions, raising the possibility of further development as a preventative and/or restorative therapy.

3.
Environ Health Perspect ; 131(2): 27009, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36847817

RESUMEN

BACKGROUND: Transient receptor potential ankyrin-1 [transient receptor potential cation channel subfamily A member 1 (TRPA1)] and vanilloid-1 [transient receptor potential cation channel subfamily V member 1 (TRPV1)] detect inhaled irritants, including air pollutants and have roles in the development and exacerbation of asthma. OBJECTIVES: This study tested the hypothesis that increased expression of TRPA1, stemming from expression of the loss-of-function TRPV1 (I585V; rs8065080) polymorphic variant by airway epithelial cells may explain prior observations of worse asthma symptom control among children with the TRPV1 I585I/V genotype, by virtue of sensitizing epithelial cells to particulate materials and other TRPA1 agonists. METHODS: TRP agonists, antagonists, small interfering RNA (siRNA), a nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway inhibitor, and kinase activators and inhibitors were used to modulate TRPA1 and TRPV1 expression and function. Treatment of genotyped airway epithelial cells with particulate materials and analysis of asthma control data were used to assess consequences of TRPV1 genotype and variable TRPA1 expression on cellular responses in vitro and asthma symptom control among children as a function of voluntarily reported tobacco smoke exposure. RESULTS: A relationship between higher TRPA1 expression and function and lower TRPV1 expression and function was revealed. Findings of this study pointed to a mechanism whereby NF-κB promoted TRPA1 expression, whereas NF-κB-regulated nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 2 (NLRP2) limited expression. Roles for protein kinase C and p38 mitogen activated protein kinase were also demonstrated. Finally, the TRPV1 I585I/V genotype was associated with increased TRPA1 expression by primary airway epithelial cells and amplified responses to selected air pollution particles in vitro. However, the TRPV1 I585I/V genotype was not associated with worse asthma symptom control among children exposed to tobacco smoke, whereas other TRPA1 and TRPV1 variants were. DISCUSSION: This study provides insights on how airway epithelial cells regulate TRPA1 expression, how TRPV1 genetics can affect TRPA1 expression, and that TRPA1 and TRPV1 polymorphisms differentially affect asthma symptom control. https://doi.org/10.1289/EHP11076.


Asunto(s)
Contaminantes Atmosféricos , Asma , Contaminantes Ambientales , Canal Catiónico TRPA1 , Canales Catiónicos TRPV , Contaminación por Humo de Tabaco , Niño , Humanos , Contaminantes Atmosféricos/toxicidad , Polvo , Células Epiteliales , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética
4.
Acta Pharm Sin B ; 13(1): 68-81, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815047

RESUMEN

Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.

5.
Front Allergy ; 3: 1062412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506643

RESUMEN

Asthmatic women tend to develop severe airway disease in their reproductive years, and 30%-40% of asthmatic women have peri-menstrual worsening of asthma symptoms. This indicates that fluctuations in ovarian hormones are involved in advancement of asthmatic disease and exacerbation of symptoms. Group 2 innate lymphoid cells, or ILC2, are readily detected in allergic conditions, such as rhinosinusitis, in individuals that develop nasal polyps do to allergen exposures, and in allergic asthma. ILC2 are airway localized immune cells activated by IL-33, an innate cytokine that perpetuates allergic inflammation by driving the production of IL-5 and IL-13. We have previously shown that ILC2 are highly activated in naïve and ovalbumin (OVA) challenged, female BALB/c mice in comparison to male mice following stimulation with IL-33. Here, we investigated the effect of steady-state ovarian hormones on ILC2 and the NF-κB signaling pathway following OVA sensitization and challenge. We found that estrogen-treated ovariectomized mice (OVX-E2) that had been challenged with OVA had reduced IL-5 and IL-13 production by lung ILC2 as compared to lung ILC2 isolated from intact male and female sham-operated controls that had been treated with OVA. ILC2 were isolated from untreated animals and co-cultured ex vivo with and without estrogen plus IL-33. Those estrogen-treated ILC2 similarly produced less IL-5 and IL-13 in comparison to untreated, and had reduced NF-κB activation. Single-cell RNA sequencing showed that 120 genes were differentially expressed in male and female ILC2, and Nfkb1 was found among top-ranked regulatory interactions. Together, these results provide new insight into the suppressive effect of estrogen on ILC2 which may be protective in female asthmatics. Understanding further how estrogen modulates ILC2 may provide therapeutic targets for the treatment of allergic diseases.

6.
Toxicol Sci ; 189(1): 107-123, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35866636

RESUMEN

Mutations in the alveolar epithelial-specific gene encoding for surfactant protein C (SP-C) are linked to pulmonary disease. Ozone (O3) is a ubiquitous pollutant known to exacerbate stress through oxidative injury and inflammation. To comprehend the structural, functional, and immunological impact of single and repeated O3 exposure, SP-CWT and surfactant protein-C I73T mutant (SP-CI73T) mice were exposed to air or O3 (0.8 ppm, 3 h, up to ×4 consecutive days). O3 was associated with mitochondrial and autophagic activation (PINK1, LC3B, and p62), focal remodeling, and inflammation localized at the terminal bronchiole-to-alveolar junctions. Histological damage was exacerbated by repeated exposure. Single O3 challenge resulted in transient elastin fiber loss, whereas repeated exposure resulted in marked increases in elastance in SP-CI73T mice. Flow cytometric analysis revealed increases in classical monocyte and monocyte-derived macrophages recruitment in conditions of repeated exposure, which peaked earlier (24 h) in SP-CI73T mice. Immunohistochemical analysis also showed clustering of Arg-1+ and CD206+ activated cells within regions of remodeled lung. Lymphoid cell analysis identified CX3CR1-B220+ B cells accumulating after single (24/72 h). Repeated exposure produces a switch in the phenotype of these B cells CX3CR1+ (72 h) only in SP-CWT mice. SP-CI73T mutants also displayed depletion in NK1.1+ NKp46+ natural killer cells in lung, as well as bone marrow, blood, and spleen. These results illustrate the cumulative impact of O3 on lung structure and function in healthy lung, and aberrant myeloid and lymphoid recruitment in SP-C mutants responding to challenge. Together, this work highlights the significance of modeling environmental exposure across the spectrum of genetic susceptibility, consistent with human disease.


Asunto(s)
Pulmón , Ozono , Animales , Humanos , Inflamación/patología , Pulmón/patología , Macrófagos , Ratones , Ozono/toxicidad , Tensoactivos
7.
ACS Chem Neurosci ; 12(14): 2693-2704, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34213884

RESUMEN

In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3ß4 (mouse) and α6/α3ß4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 µM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.


Asunto(s)
Receptores Nicotínicos , Urocordados , Animales , Aplysia , Ratones , Antagonistas Nicotínicos/farmacología , Nylons , Ratas , Receptor Nicotínico de Acetilcolina alfa 7
8.
Mol Pharmacol ; 100(3): 295-307, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34290137

RESUMEN

Prior studies revealed increased expression of the transient receptor potential vanilloid-3 (TRPV3) ion channel after wood smoke particulate matter (WSPM) treatment of human bronchial epithelial cells (HBECs). TRPV3 attenuated pathologic endoplasmic reticulum stress and cytotoxicity mediated by transient receptor potential ankyrin-1. Here, the basis for how TRPV3 expression is regulated by cell injury and the effects this has on HBEC physiology and WSPM-induced airway remodeling in mice was investigated. TRPV3 mRNA was rapidly increased in HBECs treated with WSPM and after monolayer damage caused by tryptic disruption, scratch wounding, and cell passaging. TRPV3 mRNA abundance varied with time, and stimulated expression occurred independent of new protein synthesis. Overexpression of TRPV3 in HBECs reduced cell migration and wound repair while enhancing cell adhesion. This phenotype correlated with disrupted mRNA expression of ligands of the epidermal growth factor, tumor growth factor-ß, and frizzled receptors. Accordingly, delayed wound repair by TRPV3 overexpressing cells was reversed by growth factor supplementation. In normal HBECs, TRPV3 upregulation was triggered by exogenous growth factor supplementation and was attenuated by inhibitors of growth factor receptor signaling. In mice, subacute oropharyngeal instillation with WSPM also promoted TRPV3 mRNA expression and epithelial remodeling, which was attenuated by TRPV3 antagonist pre- and cotreatment. This latter effect may be the consequence of antagonist-induced TRPV3 expression. These findings provide insights into the roles of TRPV3 in lung epithelial cells under basal and dynamic states, as well as highlight potential roles for TRPV3 ligands in modulating epithelial damage/repair. SIGNIFICANCE STATEMENT: Coordinated epithelial repair is essential for the maintenance of the airways, with deficiencies and exaggerated repair associated with adverse consequences to respiratory health. This study shows that TRPV3, an ion channel, is involved in coordinating repair through integrated repair signaling pathways, wherein TRPV3 expression is upregulated immediately after injury and returns to basal levels as cells complete the repair process. TRPV3 may be a novel target for understanding and/or treating conditions in which airway/lung epithelial repair is not properly orchestrated.


Asunto(s)
Células Epiteliales/metabolismo , Lesión Pulmonar/metabolismo , Material Particulado/efectos adversos , Transducción de Señal , Humo/efectos adversos , Canales Catiónicos TRPV/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Bronquios/lesiones , Bronquios/metabolismo , Bronquios/patología , Adhesión Celular/genética , Línea Celular , Movimiento Celular/genética , Células Epiteliales/patología , Receptores ErbB/antagonistas & inhibidores , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Lesión Pulmonar/etiología , Masculino , Ratones Endogámicos C57BL , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Transcriptoma , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proteínas Wnt/antagonistas & inhibidores , Madera , Cicatrización de Heridas/fisiología
9.
Mol Pharmacol ; 98(5): 586-597, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32938721

RESUMEN

This study investigated the roles of transient receptor potential (TRP) ankyrin-1 (TRPA1) and TRP vanilloid-3 (TRPV3) in regulating endoplasmic reticulum stress (ERS) and cytotoxicity in human bronchial epithelial cells (HBECs) treated with pneumotoxic wood smoke particulate matter (WSPM) and chemical agonists of each channel. Functions of TRPA1 and TRPV3 in pulmonary epithelial cells remain largely undefined. This study shows that TRPA1 activity localizes to the plasma membrane and endoplasmic reticulum (ER) of cells, whereas TRPV3 resides primarily in the ER. Additionally, treatment of cells using moderately cytotoxic concentrations of pine WSPM, carvacrol, and other TRPA1 agonists caused ERS as a function of both TRPA1 and TRPV3 activities. Specifically, ERS and cytotoxicity were attenuated by TRPA1 inhibition, whereas inhibiting TRPV3 exacerbated ERS and cytotoxicity. Interestingly, after treatment with pine WSPM, TRPA1 transcription was suppressed, whereas TRPV3 was increased. TRPV3 overexpression in HBECs conferred resistance to ERS and an attenuation of ERS-associated cell cycle arrest caused by WSPM and multiple prototypical ERS-inducing agents. Alternatively, short hairpin RNA-mediated knockdown of TRPV3, like the TRPV3 antagonist, exacerbated ERS. This study reveals previously undocumented roles for TRPA1 in promoting pathologic ERS and cytotoxicity elicited by pneumotoxic WSPM and TRPA1 agonists, and a unique role for TRPV3 in fettering pathologic facets of the integrated ERS response. SIGNIFICANCE STATEMENT: These findings provide new insights into how wood smoke particulate matter and other transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-3 (TRPV3) agonists can affect human bronchial epithelial cells and highlight novel physiological and pathophysiological roles for TRPA1 and TRPV3 in these cells.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Material Particulado/administración & dosificación , Humo/efectos adversos , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Línea Celular , Cimenos/efectos adversos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Pulmón/metabolismo , Pinus/efectos adversos , Canales de Potencial de Receptor Transitorio/metabolismo , Madera/efectos adversos
10.
Toxicol Sci ; 174(2): 278-290, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31944254

RESUMEN

Mucus hypersecretion is a pathological feature of acute inflammatory and chronic obstructive pulmonary diseases. Exposure to air pollutants can be a cause of pathological mucus overproduction, but mechanisms by which different forms of air pollutants elicit this response are not fully understood. In this study, particulate matter (PM) generated from burning pine wood and other types of biomass was used to determine mechanisms by which these forms of PM stimulate mucin gene expression and secretion by primary human bronchial epithelial cells (HBECs). Biomass PM < 2.5 µm generated from pine wood and several other fuels stimulated the expression and secretion of the gel-forming glycoprotein MUC5AC by HBECs. Muc5ac gene induction was also observed in mouse airways following subacute oropharyngeal delivery of pine wood smoke PM. In HBECs, MUC5AC was also induced by the transient receptor potential ankyrin-1 (TRPA1) agonists' coniferaldehyde, a component of pine smoke PM, and allyl isothiocyanate, and was attenuated by a TRPA1 antagonist. Additionally, inhibition of epidermal growth factor receptor (EGFR/ErbB1) and the EGFR signaling partners p38 MAPK and GSK3ß also prevented MUC5AC overexpression. Collectively, our results suggest that activation of TRPA1 and EGFR, paired with alterations to p38 MAPK and GSK3ß activity, plays a major role in MUC5AC overproduction by bronchial epithelial cells exposed to biomass smoke PM. These results reveal specific processes for how biomass smoke PM may impact the human respiratory system and highlight potential avenues for therapeutic manipulation of lung diseases that are affected by air pollutants.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mucina 5AC/metabolismo , Humo/efectos adversos , Canal Catiónico TRPA1/metabolismo , Animales , Bronquios/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Exposición por Inhalación , Ratones Endogámicos C57BL , Mucina 5AC/genética , Transducción de Señal , Regulación hacia Arriba , Madera , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Chem Res Toxicol ; 32(6): 1040-1050, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945539

RESUMEN

Diesel exhaust particulate (DEP) causes pulmonary irritation and inflammation, which can exacerbate asthma and other diseases. These effects may arise from the activation of transient receptor potential ankyrin-1 (TRPA1). This study shows that a representative DEP can activate TRPA1-expressing pulmonary C-fibers in the mouse lung. Furthermore, DEP collected from idling vehicles at an emissions inspection station, the tailpipe of an on-road "black smoker" diesel truck, waste DEP from a diesel exhaust filter regeneration machine, and NIST SRM 2975 can activate human TRPA1 in lung epithelial cells to elicit different biological responses. The potency of the DEP, particle extracts, and selected chemical components was compared in TRPA1 over-expressing HEK-293 and human lung cells using calcium flux and other toxicologically relevant end-point assays. Emission station DEP was the most potent and filter DEP the least. Potency was related to the percentage of ethanol extractable TRPA1 agonists and was equivalent when equal amounts of extract mass was used for treatment. The DEP samples were further compared using scanning electron microscopy, energy-dispersive X-ray spectroscopy, gas chromatography-mass spectrometry, and principal component analysis as well as targeted analysis of known TRPA1 agonists. Activation of TRPA1 was attributable to both particle-associated electrophiles and non-electrophilic agonists, which affected the induction of interleukin-8 mRNA via TRPA1 in A549 and IMR-90 lung cells as well as TRPA1-mediated mucin gene induction in human lung cells and mucous cell metaplasia in mice. This work illustrates that not all DEP samples are equivalent, and studies aimed at assessing mechanisms of DEP toxicity should account for multiple variables, including the expression of receptor targets such as TRPA1 and particle chemistry.


Asunto(s)
Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Canal Catiónico TRPA1/metabolismo , Emisiones de Vehículos/toxicidad , Células A549 , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Canal Catiónico TRPA1/agonistas , Canal Catiónico TRPA1/genética
12.
Chem Res Toxicol ; 31(5): 291-301, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29658714

RESUMEN

Wood/biomass smoke particulate materials (WBSPM) are pneumotoxic, but the mechanisms by which these materials affect lung cells are not fully understood. We previously identified transient receptor potential (TRP) ankyrin-1 as a sensor for electrophiles in WBSPM and hypothesized that other TRP channels expressed by lung cells might also be activated by WBSPM, contributing to pneumotoxicity. Screening TRP channel activation by WBSPM using calcium flux assays revealed TRPV3 activation by materials obtained from burning multiple types of wood under fixed conditions. TRPV3 activation by WBSPM was dependent on the chemical composition, and the pattern of activation and chemical components of PM agonists was different from that of TRPA1. Chemical analysis of particle constituents by gas chromatography-mass spectrometry and principal component analysis indicated enrichment of cresol, ethylphenol, and xylenol analogues, plus several other chemicals among the most potent samples. 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-xylenol, 2-, 3-, and 4-ethylphenol, 2-methoxy-4-methylphenol, and 5,8-dihydronaphthol were TRPV3 agonists exhibiting preferential activation versus TRPA1, M8, V1, and V4. The concentration of 2,3- and 3,4-xylenol in the most potent samples of pine and mesquite smoke PM (<3 µm) was 0.1-0.3% by weight, while that of 5,8-dihydronaphthol was 0.03%. TRPV3 was expressed by several human lung epithelial cell lines, and both pine PM and pure chemical TRPV3 agonists found in WBSPM were more toxic to TRPV3-over-expressing cells via TRPV3 activation. Finally, mice treated sub-acutely with pine particles exhibited an increase in sensitivity to inhaled methacholine involving TRPV3. In summary, TRPV3 is activated by specific chemicals in WBSPM, potentially contributing to the pneumotoxic properties of certain WBSPM.


Asunto(s)
Pulmón/efectos de los fármacos , Humo/efectos adversos , Canales Catiónicos TRPV/metabolismo , Emisiones de Vehículos/toxicidad , Madera/química , Animales , Línea Celular , Humanos , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-29227181

RESUMEN

The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions affect the physicochemical properties of particles, and these differences, in turn, affect commonly studied biological/toxicological responses.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Biocombustibles/toxicidad , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Emisiones de Vehículos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1B1/biosíntesis , Humanos , Interleucina-8/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Canal Catiónico TRPA1/metabolismo
14.
Mol Pharmacol ; 92(6): 653-664, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29038158

RESUMEN

To better understand how adverse health effects are caused by exposure to particulate materials, and to develop preventative measures, it is important to identify the properties of particles and molecular targets that link exposure with specific biologic outcomes. Coal fly ash (CFA) is a by-product of coal combustion that can affect human health. We report that human transient receptor potential melastatin-8 (TRPM8) and an N-terminally truncated TRPM8 variant (TRPM8-Δ801) are activated by CFA and calcium-rich nanoparticles and/or soluble salts within CFA. TRPM8 activation by CFA was potentiated by cold temperature involving the phosphatidylinositol 4,5-bisphosphate binding residue (L1008), but was independent of the icilin and menthol binding site residue Y745 and, essentially, the N-terminal amino acids 1-800. CFA, calcium nanoparticles, and calcium salts also activated transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential ankyrin-1 (TRPA1), but not TRPV4. CFA treatment induced CXCL1 and interleukin-8 mRNA in BEAS-2B and primary human bronchial epithelial cells through activation of both TRPM8 and TRPV1. However, neither mouse nor rat TRPM8 was activated by these materials, and Trpm8 knockout had no effect on cytokine induction in the lungs of CFA-instilled mice. Amino acids S921 and S927 in mouse Trpm8 were identified as important for the lack of response to CFA. These results imply that TRPM8, in conjunction with TRPV1 and TRPA1, might sense selected forms of inhaled particulate materials in human airways, shaping cellular responses to these materials, and improving our understanding of how and why certain particulate materials elicit different responses in biologic systems, affecting human health.


Asunto(s)
Bronquios/efectos de los fármacos , Compuestos de Calcio/toxicidad , Fosfatos de Calcio/toxicidad , Ceniza del Carbón/toxicidad , Óxidos/toxicidad , Material Particulado/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Animales , Bronquios/citología , Bronquios/metabolismo , Calcio/metabolismo , Línea Celular , Ceniza del Carbón/química , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Especificidad de la Especie , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
15.
J Biol Chem ; 291(48): 24866-24879, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27758864

RESUMEN

Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control.


Asunto(s)
Asma , Bronquios/metabolismo , Canales de Calcio , Ceniza del Carbón/toxicidad , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Mutación Missense , Proteínas del Tejido Nervioso , Mucosa Respiratoria/metabolismo , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Adolescente , Sustitución de Aminoácidos , Asma/genética , Asma/metabolismo , Canales de Calcio/biosíntesis , Canales de Calcio/genética , Capsaicina/farmacología , Niño , Preescolar , Femenino , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/biosíntesis , Canales de Potencial de Receptor Transitorio/genética
16.
Am J Respir Cell Mol Biol ; 53(6): 893-901, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26039217

RESUMEN

Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.


Asunto(s)
Asma/metabolismo , Canales de Calcio/fisiología , Ceniza del Carbón/toxicidad , Proteínas del Tejido Nervioso/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Emisiones de Vehículos/toxicidad , Adolescente , Asma/inducido químicamente , Asma/genética , Niño , Preescolar , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Transporte de Proteínas , Canal Catiónico TRPA1
17.
Bioorg Med Chem Lett ; 24(24): 5695-5698, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25467164

RESUMEN

Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Ciclooxigenasa 2/química , Serotonina/química , Canales Catiónicos TRPV/antagonistas & inhibidores , Flurbiprofeno/química , Flurbiprofeno/metabolismo , Humanos , Serotonina/metabolismo
18.
Pharmacol Res Perspect ; 2(5): e00062, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25089200

RESUMEN

Transient receptor potential vanilloid-3 (TRPV3) is a member of the TRPV subfamily of TRP ion channels. The physiological functions of TRPV3 are not fully understood, in part due to a lack of selective agonists and antagonists that could both facilitate the elucidation of roles for TRPV3 in mammalian physiology, as well as potentially serve as therapeutic agents to modulate conditions for which altered TRPV3 function has been implicated. In this study, the Microsource Spectrum Collection was screened for TRPV3 agonists and antagonists using alterations in calcium flux in TRPV3 over-expressing HEK-293 cells. The antispasmodic agent drofenine was identified as a new TRPV3 agonist. Drofenine exhibited similar potency to the known TRPV3 agonists 2-aminoethoxydiphenylboronate (2-APB) and carvacrol in HEK-293 cells, but greater selectivity for TRPV3 based on a lack of activation of TRPA1, V1, V2, V4, or M8. Multiple inhibitors were also identified, but all of the compounds were either inactive or not specific. Drofenine activated TRPV3 via interactions with the residue, H426, which is required for TRPV3 activation by 2-APB. Drofenine was a more potent agonist of TRPV3 and more cytotoxic than either carvacrol or 2-APB in human keratinocytes and its effect on TRPV3 in HaCaT cells was further demonstrated using the antagonist icilin. Due to the lack of specificity of existing TRPV3 modulators and the expression of multiple TRP channels in cells/tissue, drofenine may be a valuable probe for elucidating TRPV3 functions in complex biological systems. Identification of TRPV3 as a target for drofenine may also suggest a mechanism by which drofenine acts as a therapeutic agent.

19.
Nanomedicine ; 10(1): 1-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23811290

RESUMEN

Human biodistribution, bioprocessing and possible toxicity of nanoscale silver receive increasing health assessment. We prospectively studied commercial 10- and 32-ppm nanoscale silver particle solutions in a single-blind, controlled, cross-over, intent-to-treat, design. Healthy subjects (n=60) underwent metabolic, blood counts, urinalysis, sputum induction, and chest and abdomen magnetic resonance imaging. Silver serum and urine content were determined. No clinically important changes in metabolic, hematologic, or urinalysis measures were identified. No morphological changes were detected in the lungs, heart or abdominal organs. No significant changes were noted in pulmonary reactive oxygen species or pro-inflammatory cytokine generation. In vivo oral exposure to these commercial nanoscale silver particle solutions does not prompt clinically important changes in human metabolic, hematologic, urine, physical findings or imaging morphology. Further study of increasing time exposure and dosing of silver nanoparticulate silver, and observation of additional organ systems are warranted to assert human toxicity thresholds. FROM THE CLINICAL EDITOR: In this study, the effects of commercially available nanoparticles were studied in healthy volunteers, concluding no detectable toxicity with the utilized comprehensive assays and tests. As the authors rightfully state, further studies are definitely warranted. Studies like this are much needed for the more widespread application of nanomedicine.


Asunto(s)
Corazón/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Plata/administración & dosificación , Adulto , Anciano , Recuento de Células Sanguíneas , Femenino , Corazón/diagnóstico por imagen , Humanos , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Imagen por Resonancia Magnética , Masculino , Nanopartículas del Metal/efectos adversos , Persona de Mediana Edad , Radiografía Torácica , Especies Reactivas de Oxígeno/metabolismo , Plata/efectos adversos , Esputo/metabolismo , Urinálisis
20.
Chem Res Toxicol ; 26(5): 750-8, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23541125

RESUMEN

Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM < 2.5 µm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.


Asunto(s)
Pulmón/citología , Pulmón/efectos de los fármacos , Proteínas del Tejido Nervioso/agonistas , Material Particulado/farmacología , Humo/efectos adversos , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Madera/química , Acetanilidas/farmacología , Aldehídos/química , Aldehídos/farmacología , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Línea Celular Tumoral , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacología , Diterpenos/química , Diterpenos/farmacología , Células HEK293 , Humanos , Pulmón/metabolismo , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Material Particulado/química , Fenalenos/química , Fenalenos/farmacología , Pinus/química , Prosopis/química , Purinas/farmacología , Propiedades de Superficie , Canal Catiónico TRPA1 , Tetrahidronaftalenos/química , Tetrahidronaftalenos/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/biosíntesis , Canales de Potencial de Receptor Transitorio/genética , Nervio Trigémino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...